## Nondeterministic Finite Automata Lecture 6 Section 2.2

Robb T. Koether

Hampden-Sydney College

Mon, Sep 5, 2016

Robb T. Koether (Hampden-Sydney College) Nondeterministic Finite Automata

∃ ► < ∃ ►</p>

< 61 b

## Nondeterminism

- Definition
- Examples



# 3 Assignment

∃ ► 4 Ξ

< 17 ▶

# Outline

## Nondeterminism

- Definition
- Examples

2 Building a DFA from an NFA

## 3 Assignment

э

Sac

- A deterministic finite automaton is deterministic because every move is forced.
- That is,  $\delta$  is a function.
- For every state-symbol combination (q, x) in Q × Σ, there is exactly one q' ∈ Q such that δ(q, x) = q'.

- To make a finite automaton *nondeterministic*, we drop the requirement that the image of (*q*, *x*) be a unique state and allow it to be a set of states.
- (q, x) may have no image, one image, or more than one image.

### Definition ( $\lambda$ -move)

An  $\lambda$ -move is a transition from one state to another made without reading an input symbol. (We "read"  $\lambda$ .)

• We also allow " $\lambda$ -moves."

∃ ► ∢

A >

# Outline



Examples

2 Building a DFA from an NFA

## 3 Assignment

590

Definition (Nondeterministic finite automaton)

A nondeterministic finite automaton (NFA) is a 5-tuple  $\{Q, \Sigma, \delta, q_0, F\}$ , where

- $Q, \Sigma, q_0$ , and *F* are as they were for a DFA.
- The transition function is

 $\delta: \boldsymbol{Q} \times (\boldsymbol{\Sigma} \cup \{\lambda\}) \rightarrow \mathcal{P}(\boldsymbol{Q}).$ 

## Example (NFA)



æ

DQC

### Definition (Acceptance by an NFA)

A string *w* is accepted by an NFA if there is *at least one* computation on the NFA with input *w* that terminates in an accepting state.

### Definition (Language of an NFA)

The language of an NFA is the set of all strings in  $\Sigma^*$  that are accepted by the NFA.

• For a given input, an NFA may admit a multitude of computations.

くロト (過) () () () () ()

# Outline

# Nondeterminism

Examples

2 Building a DFA from an NFA

## B Assignment

э

DQC

### Example (Nondeterministic finite automata)

- Let  $\Sigma = \{ \boldsymbol{a}, \boldsymbol{b} \}$ .
- Let  $L_1 = \{ w \in \Sigma^* \mid w \text{ contains an even number of } \mathbf{a}$ 's $\}$ .
- Let  $L_2 = \{ w \in \Sigma^* \mid w \text{ contains an even number of } \mathbf{b}$ 's $\}$ .
- Design NFAs that accept
  - $L_1 \cup L_2$ •  $L_1 L_2$
  - L<sub>1</sub>\*
  - $L_1 \cap L_2$
- Describe  $\delta$  for the NFA that accepts *AB*.
- Do the computation for the strings ababb and ababbb.

# Nondeterminism

- Definition
- Examples



## Assignment

Robb T. Koether (Hampden-Sydney College) Nondeterministic Finite Automata Mon,

э

DQC

• Given a function

$$f: \boldsymbol{A} \to \mathcal{P}(\boldsymbol{B}),$$

we may derive a function

$$g\colon \mathcal{P}(A) o \mathcal{P}(B).$$

Robb T. Koether (Hampden-Sydney College) Nondeterministic Finite Automata

э

Sac

< ロト < 同ト < ヨト < ヨト

# Example

### Example

- Let  $A = \{2, 3, 4, 5\}$ .
- Let *B* = {6, 7, 8, 9}.
- Let *f* be the function that maps every integer in *A* to the set of its multiples in *B*.

$$f: A \to \mathcal{P}(B) \\ f(2) = \{6, 8\}, \\ f(3) = \{6, 9\}, \\ f(4) = \{8\}, \\ f(5) = \varnothing.$$

Robb T. Koether (Hampden-Sydney College) Nondeterministic Finite Automata Mon, Sep 5

3

- Define  $g : \mathcal{P}(A) \to \mathcal{P}(B)$  as follows.
- For each subset  $S \subseteq A$ , define

$$g(S) = \bigcup_{a \in S} f(a).$$

Example (Deriving  $g : \mathcal{P}(A) \to \mathcal{P}(B)$ )

• Then, for example,

$$\begin{split} g(\{2\}) &= f(2) = \{6,8\}, \\ g(\{2,3\}) &= f(2) \cup f(3) = \{6,8,9\}, \\ g(\{2,3,4\}) &= f(2) \cup f(3) \cup f(4) = \{6,8,9\}. \end{split}$$

What is g(∅)?
What is g({4,5})?

イロト イ団ト イヨト イヨト 二日

# Nondeterminism

- Definition
- Examples



# 3 Assignment

э

DQC

### To be collected on Wed, Sep 7:

- Section 1.1 Exercises 31, 43a.
- Section 1.2 Exercises 15, 17e.
- Section 2.1 Exercises 7e, 17, 22.

A B F A B F

< 17 ▶

### Assignment

#### • Section 2.2 Exercises 3, 5, 7, 8, 9, 12, 13, 14.

Robb T. Koether (Hampden-Sydney College) Nondeterministic Finite Automata

э

< ロト < 同ト < ヨト < ヨト